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ABSTRACT

Fake base station (FBS) crime is a type of wireless communication
crime that has appeared recently. The key to enforcing the laws on
regulating FBS based crime is not only to arrest but also to convict
criminals effectively. Much work on FBS discovering, localization,
and tracking can assist the arresting, but the problem of collecting
evidence accurately to support a proper conviction has not been
addressed yet.

To fill in the gap of enforcing the laws on FBS crimes, we de-
sign FBSleuth, an FBS crime forensics framework utilizing “radio
frequency (RF) fingerprints”, e.g., the unique characteristics of the
FBS transmitters embedded in the electromagnetic signals. Essen-
tially, such fingerprints stem from the imperfections in hardware
manufacturing and thus represent a consistent bond between an
individual FBS device and its committed crime. We model the RF
fingerprint from the subtle variance of the modulation errors, in-
stantaneous frequency, and phases of the RF signals. Our validation
of FBSleuth on six FBSes from four cities over more than 5 months
shows that FBSleuth can achieve over 99% precision, 96.4% recall,
and 97.94% F1 score in a dynamic wild environment.

CCS CONCEPTS

• Networks → Wireless access points, base stations and in-
frastructure; Mobile and wireless security; • Applied com-
puting→ Evidence collection, storage and analysis;
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1 INTRODUCTION

Mobile communication technologies bring us great convenience by
allowing us to check sensitive information and make a payment
any time anywhere. Unluckily, crimes that utilize fake base station
(FBS) make the mobile communication a weak point for attacks.
FBS mainly utilizes the vulnerability of Global System for Mobile
Communication (GSM) network. Although a few FBSes can attack
the 3G, 4G, and 5G networks, they jam the current 3G, 4G or 5G
channels and force the smartphones to fall back to GSM networks.
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Figure 1: A full loop of law enforcement of FBS crimes con-
sists of four steps, where accurate forensics is missing.

FBS, pretending to be a legitimate base station, can transmit any
malicious SMS messages (hereafter FBS messages) that may contain
spam advertisements, fishing links, and solicitations for high-fee
premium services. These FBSes are pervasively found in the U.S.,
China, India, Russia, UK, etc. , and are typically cheaply made by
underground manufacturing to increase the profit. For instance,
an FSB typically cost less than $700 and can earn up to $1400 a
day [39]. Not surprisingly, statistics show that even within China,
over 5.7 billion fraud messages from FBSes were received in 2015,
causing estimated losses of billions of dollars [3–5].

To cope with the aforementioned issues, governments from var-
ious countries have passed laws to regulate the FBS devices. In
general, it is considered a crime to own and operate FBS devices,
and sentences are determined by the level of usage of the devices.
For law enforcement, it is critical to both arrest and convict crimi-
nals effectively. To assist arresting criminals, much work has been
devoted to assist criminal FBS discovering [10, 18, 27], localization,
and tracking [9, 27, 28]. However, to the best of our knowledge,
collecting evidence accurately to support a proper conviction has
not been addressed yet, as illustrated in Fig. 1. According to the
criminal law of China, it is considered to be a serious crime only
if the criminal has transmitted more than 5000 FBS messages [6].
Thus, catching a criminal with an FBS in his car may at most lead to
a small fine, while a conviction of a serious crime requires proving
that over 5000 FBS messages were sent. Thus, in this paper, we
investigate the problem of FBS crime forensics, i.e., validating that
an FBS message is indeed sent by an illegal device.

For FBSes, existing forensic approaches are either based on log
files or inference. The former extracts the log files in the FBS de-
vices [23], which contain the International Mobile Equipment Iden-
tity (IMEI) of victims’ devices. However, this approach will be in-
valid once the criminals reset their devices right before being ar-
rested or if they keep erasing them automatically. Alternatively,
Telecom providers can infer the existence of an FBS device by esti-
mating the abnormal release report, i.e., the number of users that
are disconnected from normal bases stations. Since the FBS trans-
mitters will cause nearby mobile users to disconnect from normal
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Figure 2: (a) At each frequency point, signals are divided into slices sequentially and 51 slices form a period. Then each slice
is further divided into 8 bursts and 51 bursts assemble one Timeslot, e.g. T0. The Timeslot at a frequency point is a physical
channel on which the logical channels are mapped. (b) A GSM burst is the subcomponent of Timeslot and each one contains
156.25 bit, lasting for 577 us. 26-bit Training Sequence Code (TSC) from one base station is identical for the Normal Burst and
will be utilized for fingerprint extraction.

base stations and connect to themselves by transmitting at a higher
power level, an enormous number of disconnections may indicate
the existence of an FBS. However, this approach can not directly
prove that 5000 FBS messages are sent.

The key to convict FBS crimes is to prove who transmitted an FBS

message. In this paper, we design FBSleuth, an evidence verification
framework that utilizes RF (radio frequency) fingerprint to validate
the message transmitter. RF fingerprint essentially characterizes the
subtle distortion of the messages’ electromagnetic signals caused
by the transmitters. Given a consistent RF fingerprint for each
device, FBSleuth fulfills two aspects of evidence verification by
(1) matching the RF fingerprint of an FBS message to verify the
source of the FBS message and (2) demodulating and decoding FBS
messages to count the number of FBS messages. Compared with
existing methods, FBSleuth utilizes the raw RF signals sent by an
FBS to generate RF fingerprints and form the mapping between
messages and the FBS. As such, it can even distinguish two FBSes
within the same area.

The RF Fingerprint of an FBS is originated from hardware im-
perfections, e.g., analog circuitry components of the RF front-end,
which are introduced during manufacture. In our study, we find
that these imperfections lead to subtle but stable variance in the
modulation errors, frequencies, and phases of the signals. Different
from common RF fingerprints of indoor portable electronic devices,
FBS fingerprints should be insensitive to the dynamic ambient
noise over a long period, since the distance between the receiver
and FBS changes dynamically in the wild and one FBS may keep
running for a whole day in practice. Some SNR sensitive features
(e.g., amplitude error and error vector magnitude (EVM)), though
reflecting the imperfection of hardware and being widely used in
fingerprinting indoor devices, are infeasible for FBS fingerprinting.
Here, the challenge is to extract RF fingerprints of FBS messages
that are consistent for the same devices yet distinct for different
ones, regardless of the following challenges.

• How could we extract stable and unique RF fingerprints from
mobile FBSes that may travel at various patterns?

• Could the RF fingerprint be consistent while the content of FBS
messages, the SNR levels, the supplied batteries, and the receivers
are different?

• How to ensure that the RF fingerprints and the matching al-
gorithms lead to a low false positive and a low false negative
rate?

To overcome the aforementioned challenges, we extract RF fin-
gerprints from the steady signal of bursts, i.e, utilizing the same
segment of signals in FBS messages, unlike many existing transient-
signal-based RF fingerprinting methods. Such a method creates an
enhanced fingerprint and imposes low requirements on the sam-
pling rate. Our validation on 6 typical real FBSes from four cities
during more than five months shows that FBSleuth can verify the
transmitters with a low false positive rate in various conditions and
could effectively assist fighting FBS crimes in the wild. In summary,
our contributions are listed as follows.

• To the best of our knowledge, we are the first to propose FBS
crime forensics utilizing the RF fingerprint technology.

• We design and implement a framework, FBSleuth, for FBS crime
evidence verification. Despite the challenges of the ambient noise
insensitivity, extendedworking period and irrelevance of content
of FBS fingerprinting, we extract features elaborately from the
modulation domain and waveform domain of the raw RF signals
to characterize hardware differences of FBS.

• We evaluate FBSleuth using 6 real-world FBS devices. Extensive
experiments over five months on precision, consistency, and
stability of our RF fingerprint demonstrate the high accuracy
and robustness of FBSleuth.

2 BACKGROUND

To investigate the characteristics of FBSes, we first explore the
communication protocol of FBSes, i.e., GSM. The signal emitting
of FBS follows the GSM 04.08 specification [26]. Here, we briefly
introduce the structure and the modulation errors of GSM bursts
and the structure of FBS device.

2.1 Structure of GSM Bursts

The GSM cellular network utilizes Frequency Division Multiple
Access (FDMA) and Time Division Multiple Access (TDMA) tech-
nologies. For the GSM900 band as an example, the total 25 MHz
downlink bandwidth ranging from 935 MHz to 960 MHz is divided
into 124 carrier frequency points with 200 kHz bandwidth. Each
base station is allocated with one or multiple frequency points.
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At one frequency point, time is divided into eight Timeslots (T0-
T7) as shown in Fig. 2 (a). In GSM network, the Timeslot at a fre-
quency point is a physical channel on which the logical channels
are mapped. A GSM burst is the subcomponent of Timeslot and
each one lasts for 577us .

There are mainly three kinds of burst structure in the GSM
downlink (shown in the Fig. 2 (b)), FCH Bursts, SCH Bursts, and
Normal Bursts. An FCH Burst is used for frequency correction and
can be regarded as a pure sinusoid wave. An SCH Burst is used for
synchronization with 64 training bits. A Normal Burst (NB) is the
most common burst in GSM scheme which is used to transmit SMS
messages, system information, control signaling, and voices. Each
NB contains Training Code Sequence (TSC) of 26 bits. To extract
stable fingerprints, we exploit the constant part of GSM bursts and
find that TSC in Normal Bursts is a good candidate.

2.2 Modulation Errors of GSM Bursts

A GSM signal can be decomposed into I component and Q compo-
nent and thus forms a signal vector (shown in Fig. 3). R represents
the reference signal vector (aka. the ideal modulated signal vector)
and Z represents the signal measured in practice. E represents the
error signal vector that is the subtraction of Z andR. Modulation er-
rors include Error Vector Magnitude, Magnitude Error, Phase Error,
Frequency Error, IQ Offset, Quadrature Skew Error, IQ Imbalance.

Figure 3: Definition of Modulation Errors.

(a) Error Vector Magnitude (EVM.) is the ratio of the root mean
square (RMS) value of average square of magnitude of E and the
RMS value of the average power (i.e., square of magnitude) of R.

EVM(%) =
RMS(PE )

RMS(PR )
× 100% (1)

where RMS is the root mean square, PE is the average power of E
and PR is the average power of R.
(b) Magnitude Error (Mag Err.) is the ratio of the RMS value of the
magnitude of E and the RMS value of the magnitude of R

Mag Err(%) =
RMS(MaдR −MaдZ )

RMS(MaдR )
× 100% (2)

whereMaдZ is the magnitude of Z andMaдR is the magnitude of
R.
(c) Phase Error (Phase Err.) is the intersection angle of Z and R.
(d) Frequency Error (Freq Err.) is the frequency offset of the demod-
ulated burst from the center frequency and is averaged over all
symbols in the burst.

Control System
RF Module

Antenna

Amplifier

Wifi Module

Power Supply

Figure 4: The structure of FBS device ( provided by law
enforcement agency ). FBSes are manufactured by private
workshops and sold on the black market illegally.

(e) IQ Offset is the ratio of the power at the center frequency to the
average signal power, and indicates the magnitude of the carrier
feedthrough signal. When there is no carrier feedthrough, the IQ
offset is zero.
(f) Quadrature Skew Error (Quad Err.) indicates the angle error be-
tween the I and Q components. Ideally, I and Q should be orthogonal
(90 degrees apart). A quadrature skew error of -3 degrees means I
and Q are 87 degrees apart.
(g) IQ Imbalance (IQ Imb.) compares the imbalance of the I compo-
nent with the Q component.

Summary: The aforementioned modulation errors are closely
related to the hardware imperfection of GSM devices and can con-
stitute FBS fingerprints.

2.3 Operations on FBS in the crime

Fig. 4 shows the hardware architecture of an FBS, which is mainly
composed of a transceiver and a control system. The transceiver
is responsible for transmitting the GSM signals and contains an
RF module, an amplifier, and an antenna. The control system takes
commands from user interface and sets the frequency point, power
level, a content of FBS messages, and pattern parameters, etc. When
an attacker commits a crime, he has to use the broadcasting channel
(BCCH Bursts in T0 Timeslot) at a frequency point. The FBS sends
system information on the T0 timeslot to disconnect nearby devices
from normal base stations and force them to reconnect to the FBS.
Then, the FBS will send FBS messages to the victim device. Note
that an FBS may use various frequency points and power levels
and it is worth evaluating the feasibility of fingerprinting FBS with
various setups.

3 PROBLEM OVERVIEW

In this section, we describe the forensics problem and the threat
model.

3.1 Forensics

As the critical step to fight against FBS crimes, forensics for FBS is
to collect evidence that can prove the FBS crimes are committed by
specific FBS devices. Forensics mainly contains:

• Source verification. FBSleuth should be able to determine
the originality of the collected wireless signals, i.e. which
FBSes out of the candidate FBSes commit the crime. For
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example, once an FBS is caught, FBSleuth should identify
this signal sent by it by comparing the RF fingerprints from
the collected signals.

• Content andquantity verification. FBSleuth should record
the content and the exact number of messages sent by an
FBS. This can be achieved with standard signal demodulation
technique and is not the focus of this paper.

3.2 Threat Model

According to the operation of FBS, we make the following assump-
tions on the attackers.

• High transmitting power. The FBS is usually operated
with a high transmitting power to “kidnap” the victim devices
from legitimate base stations. Luckily, the high transmitting
power makes it possible to collect FBS’s signals from a long
distance.

• Changing frequency point.An attacker can set the FBS to
work at various working frequency points over time. Usually,
an attacker will choose the frequency point that is used
by the legitimate base station with a weak receiving signal
strength.

• Mobility. An attacker typically moves the FBS on an au-
tomobile and drives around a city to affect as many victim
devices as possible.

• Software manipulation. The attacker can manipulate the
software in an FBS, including the log files, the message con-
tents, and etc.

• Hardware consistency.We assume that the attacker won’t
change the hardware in an FBS unless the devices fail to func-
tion. In practice, for the sake of stability and performance,
an attacker has no incentive to change the hardware of an
FBS.

In summary, the goal of FBSleuth is to achieve high-accuracy
forensics by utilizing the RF fingerprints. Specifically, FBSleuth
should achieve high precision in fingerprint matching, consistency
of the fingerprints from the same individual FBSes and stability
under various conditions.

4 FEASIBILITY OF FINGERPRINTING FBS

RF fingerprints are stem from the inherent hardware imperfections
or low-grade electronics in analog components. These imperfec-
tions are typically introduced at manufacture and assembly stages
of analog components of the RF-front-end. The RF-front-end of
FBS is a typical superheterodyne transmitter (shown in Fig. 5). In
the circuitry of FBS, the IQ quadrature signal is digitized by the
DAC (digital to analog converter) and then passes through quadra-
ture modulator, several mixers, and filters for up-conversion and
amplification at each stage. Virtually all components on the signal
path of the RF-front-end contribute to the distortion of transmitted
signals. As shown in Fig. 5, we summarize the distortions associated
with the corresponding hardware sources in accordance with the
previous work of RF fingerprint [17]. Firstly, when I component
and Q component of signals undergo quadrature modulation, quad-
rature errors and IQ offsets will be introduced to the signals. Then
the signals will suffer from self-interference when passing through
the filters. Finally, an oscillator will introduce frequency errors,
and phase errors to the signals when up-conversion. To verify the

DA 
Converter0

90

Antenna

0
90

Mixer

Figure 5: Structure of Superheterodyne Transmitter.

aforementioned signal deviations, we conduct an experiment to
analyze the modulation errors of FBS signals.

Experiment Setup.Wemeasured 6 FBSes by a Keysight N9020B
spectrum analyzer with VERT900 antenna in the lab environment.
The FBSes are powered by a 12 Volt lithium battery to emulate the
real scenes. The central frequency is set to 938.2MHz. The analyzing
software VSA89600 inside the spectrum analyzer is used to record
the captured signals and calculate the modulation error metrics of
each burst. For each FBS, we record 500 sets of modulation errors
and calculate the mean values of them.

Experiment Results. We analyzed the errors defined in chap-
ter 2 of the signals collected over the air from the 6 FBSes and
two legitimate operator base stations at the same frequency, i.e.,
938.2 MHz. Table 1 shows the comparison between legitimate base
stations and FBSes on the average modulation errors and their cor-
responding variances. We found that FBSes have larger modulation
errors and variances than the legitimate base stations. Moreover,
the differences of the modulation error metrics among FBSes can
be discriminated intuitively, which confirms the distance of the
deviations among various FBSes.

Due to cost constrains and manufacture limitations, an FBS is
often assembled with low-precision oscillators, mixers, and am-
plifiers. The hardware imperfections of these components even
within the same model, introduce various RF characteristics. The
variety of RF characteristics can be represented by deviation with
respect to ideal signals, e.g, modulation error metrics. Therefore,we
constituted FBS fingerprints based on modulation errors, details in
the design part.

5 FBSLUETH DESIGN

In this section, we present the design details of FBSleuth.

5.1 Overview

FBSleuth is composed of five modules: raw signal collection, signal
processing, evidence database, fingerprint generation, and verifi-
cation (as shown in Fig. 6). The raw signal collection module is to
collect the raw signals from FBSes during crime conduction and
after an arrest. The collected signals are marked with both time
and location information. The signal processing is divided into
modulation domain and waveform domain. Modulation domain
processing is to calculate several modulation errors for each burst.
Waveform domain processing is to extract bursts (basic process-
ing elements in the RF signals) from the raw signals, select target

4
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Table 1: Modulation Errors of FBS and NBS.

EVM. (%rms) Mag Err. (%rms) Phase Err. (deg) Freq Err. (Hz) IQ offset (dB) Quad Err. (deg) IQ Imb. (dB)

FBS1 23.3490 ±1.7039 12.9925 ±1.0953 11.4452 ±1.0953 322.0546 ±35.3439 -32.9298 ±5.6213 0.6111 ±1.8032 0.1080 ±0.2417

FBS2 27.2214 ±1.4140 12.7578 ±0.4761 14.0400 ±0.9230 718.6751 ±31.2604 -32.3480 ±5.5010 1.2345 ±1.9753 0.0968 ±0.3021

FBS3 24.6632 ±1.9229 1.4610 ±1.9455 14.2347 ±1.2168 312.5141 ±12.7166 -34.1611 ±5.5262 0.1013 ±0.7220 -0.0114 ±0.2652

FBS4 25.8515 ±1.8104 1.4882 ± 1.9455 14.9477 ±1.1243 714.2193 ±19.6917 -34.0406 ±5.4761 0.1414 ±0.7305 -0.0075 ±0.2374

FBS5 15.1140 ±3.2316 2.4592 ± 1.5677 8.9703 ±3.1295 229.3430 ±21.4874 -38.2389 ±5.8440 0.1158 ±0.5587 0.0035 ±0.1646

FBS6 12.5660 ±3.7198 2.4813 ± 1.7294 7.5617 ±3.6407 241.5086 ±37.3507 -39.5632 ±5.9562 0.1407 ±0.5356 -0.0049 ±0.1234

NBS1 6.2571 ±0.4936 5.3494 ±0.43120 1.9032 ±0.23426 -42.2547 ±2.4104 -65.0432 ±3.8454 -0.0427 ±0.5928 0.0031 ±0.0793

NBS2 6.0003 ±1.6125 4.3314 ±1.6041 3.2696 ±4.9841 44.6279 ±28.0757 -32.5464 ±1.9719 -0.0164 ±0.8697 0.0010 ±0.1014
� In our modulation error analysis, we found that not all of the bursts were well modulated by FBSes and could not be demodulated definitely. We only
recorded the modulation errors of FBS bursts whose EVM was under 30%rms and calculated the average and variance value of the modulation errors.

(C) Evidence Database

(A) Raw Signal Collection

(B) Signal Processing

(E) Verification(D) Fingerprint  
Generation

Counting the SMSs of verified FBS in 
Database for Sentencing 

•
•
•

Figure 6: Working Flow of FBSleuth. The black arrow (left)
indicates the procedure of processing raw FBS signals col-
lected by the acquisition devices when FBS is committing
the crime. The blue arrow (right) indicates the procedure of
processing raw FBS signals collected by the police when FBS
is caught.

region from the bursts for further fingerprint generation. The evi-
dence database module stores the raw signals, demodulates the FBS
signals and records its content, sender and receiver (IMEI for ex-
ample) information. The fingerprint generation module generates
and selects the RF fingerprints from the processed signals both in
modulation domain and waveform domain. The verification module
utilizes machine learning algorithm to train the model and match
the fingerprints with a specific FBS.

With the aforementioned five modules, FBSleuth can help deter-
mine when and where the FBS committed crimes before, distinguish
two FBSes at one spot and provide the number and content of FBS
to the court to assess the accumulated severity of crimes.

5.2 Raw Signal Collection

The signal collection is the first step for FBSleuth, the collection
device should have proper sampling rates as well as resolutions
for further RF fingerprints generation. In the FBSleuth, we used
the USRP N210 equipped with FLEX900 daughterboard as a signal
collection device. The USRP N210 is a portable software-defined

Fake Base Station

Legitimate Base Stations Legitimate Base Stations

Figure 7: Signal strength of GSM downlink frequency band
(from 935MHz to 960MHz) under an FBS attack in the urban
area. (Measured by Keysight N9020B spectrum Analyzer in
the lab environment.)

platform that can collect signals spanning DC-6.0 GHz with tun-
able 25/50 MHz bandwidth filter. The selected band of collection
frequency is first down-converted to an intermediate frequency (IF)
and down-converted to near baseband again, sampled by a 14 bit
ADC at a rate of 100M samples-per-second. Note that our FBSleuth
system can be implemented on devices other than USRP N210, as
long as the device performance exceeds the minimum criteria.

A natural question is how can we distinguish FBS from other

legitimate base stations before collecting the signals? This has been
solved by the previous work [19] and we can adopt these methods
in FBSleuth for detecting and differentiating FBSes. The signals
received by the collection device will be stored as complex in-phase
(I) and quadrature (Q) components which preserve amplitude and
phase information of the signals.

5.3 Evidence Database

Evidence database is designed to store raw signals with the time/
location information, demodulate the signals to extract and store
FBS messages. There are also many ways to recover the fraud
messages from the recorded raw signals, such as OsmocomBB open
source program [2] which implements the GSM protocol stack’s
three lowest OSI Layers and can be used to parse the FBS fraud
messages from the physical layer signals. We implemented the
evidence database on top of the OsmocomBB open source program.

5.4 Signal Processing

Filtering. From the received signals shown in (Fig. 7), we can
find that the signal frequency points from FBSes are close to the
legitimate one in practice. In order to extract the FBS signals from

5
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coupled signals, we designed a six-order complex low pass filter
with 250 KHz cut-off frequency to make sure that we collected
enough sidelobe information of the FBS signals as well as avoided
the interference from adjacent channels.
Modulation Errors Calculation. Recall that in the last chapter,
we compared average modulation errors among FBSes and found
them closely related to the intrinsic hardware imperfection of FBS.
Therefore, we obtain Error Vector Magnitude, Magnitude Error, Phase

Error, Frequency Error, IQ Offset, Quadrature Skew Error, and IQ

Imbalance of each burst. These modulation errors will be evaluated
in the next fingerprint generation step.
Burst Detection. In the waveform domain, FCH bursts provide us
with calibration for burst detection. Since each FCH burst can be
regarded as 37 periods of a pure sinusoid wave, we can generate a
standard 37-period sinusoid wave and calculate the correlation to
detect the FCH bursts in the raw signals. We leveraged the frame
structure sequence of GSM and length of each burst to locate the
start points of bursts.
Target Region Selection. To find stable and unique fingerprints,
our first mission is to collect a signal sequence that contains enough
information to verify different FBSes. As modulation errors rep-
resent the average deviation of the whole burst, different content
fields of bursts may negatively influence the results. To eliminate
the influence of contents of different GSM bursts, we proposed to
use the Training Sequence Code (TSC) in Normal Bursts since the
contents in TSC bursts are identical. TSC locates in the mid-amble
region of Normal Bursts. According to GSM specification [7], there
are only 8 kinds of TSC in GSM networks (coded with 3 bits, 000-
111). More specifically, the TSC is identical to the value of 3-bit Base
station Color Code (BCC), which is constant after a base station
starts its service. For an FBS, an attacker cannot change its TSC via
software interface in practice. Fig. 8 shows that the instantaneous
phases and frequency traces of TSC are almost the same for the
Normal Bursts belonging to one FBS. However, identifying an FBS
only by TSC is not reliable since different FBSes might have the
same TSC because of the limited types of TSC (only 8). In order to
be robust, FBSleuth should be able to differentiate two FBSes of
the same TSC type.
Pre-processing. Instead of extracting features from raw I-Q com-
plex TSC traces directly, FBSleuth pre-processes the traces to ob-
tain two intermediate traces: an instantaneous phase trace ϕ and
an instantaneous frequency trace f . These traces of the complex
signal s (n) = sI (n) + jsQ (n) are given by:

ϕ (n) = arctan
sQ (n)

sI (n)
(3)

f (n) =
1

2π

ϕ (n + 1) − ϕ (n)

Δt
(4)

where n = 1, 2, 3, . . . ,N , and N is the total number of samples.
Δt is the sample interval. Then these traces are centered and nor-
malized prior to fingerprint generation. These traces in Equation (3),
(4) are centered into ϕc , fc using:

ϕc (n) = ϕ (n) − uϕ (5)

fc (n) = f (n) − uf (6)

(a)Instantaneous phase of TSC in Normal Bursts

(b)Instantaneous frequency of TSC in Normal Bursts

Figure 8: Instantaneous phase (a) and frequency (b) traces of
TSC (in the rectangle) in Normal Bursts from one FBS. The
phase and frequency patterns of TSC are consistent across
time/ bursts.

FBS
Lithium Battery

USRP N210Attenuator 

ThinkPad T440P

Figure 9: Lab Environment Experiment Setup.

where uϕ , uf are the means of Equation (3),(4) across N samples.
The final centered and normalized traces ϕcn , fcn are given by:

ϕcn (n) =
fc (n)

max | fc (n) |
(7)

fcn (n) =
Ac (n)

max |Ac (n) |
(8)

5.5 Fingerprint Generation

In the fingerprint generation module, we extracted the features in
both themodulation domain and thewaveform domain to constitute
the RF fingerprint of FBS.
Modulation Domain. Considering the stability and consistency
requirement of RF fingerprint, the extracted features of FBS sig-
nals should be insensitive to the dynamic ambient noise and be
consistent during all the working period. Therefore, the stability
and consistency of aforementioned seven modulation errors should
be evaluated before adopted as fingerprint features. We collected
500 bursts of randomly selected FBS with USRP N210 at 938.2MHz.
Then we added Additive White Gaussian Noise to the recorded
traces with the signal to noise ratio (SNR) ranging from 20 dB to
53 dB and calculated theMetricsi, j , where i represents EVM., Mag
Err., Phase Err., Freq Err., Quad Err., IQ Imb. and j represents 20dB,
30dB, 40dB, 44dB, and 53dB. The Relative Metric Change is designed
to reflect the fluctuation of modulation error in different ambient
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Figure 10: (a) describes the relative change of differentmodu-
lation error metrics under different SNR levels. Freq Err., IQ
offset, and Phase Err. are more stable than Quad Err., Mag
Err., and IQ Imb. under the dynamic ambient noise; (b) de-
scribes the relative change of Freq Err., IQ offset, and Phase
Err. at different time of FBS working period are no more
than 4%.

noise and the formula is as follows.

Rel.Changei, j =
Metricsi, j −Metricsi,53dB

Metricsi,53dB
(9)

Fig 10 (a) illustrates the relative change of different modulation error
metrics with SNR. The Quad Err. and Mag Err. increase rapidly with
SNR decreases, which indicates they are sensitive to the dynamic
ambient noise. However, the Freq Err., IQ offset, and Phase Err.
keep stable with ambient noise and distinct between FBSes. To
further evaluate the consistency of Freq Err., IQ offset, and Phase
Err., we kept the FBSworking continuously, collected 500 bursts and
calculated the modulation errors for each hour. Fig 10 (b) shows that
the relative change of Freq Err., IQ offset, and Phase Err. overtime
are no more than 4%. This indicates the uniqueness, stability, and
consistency of Freq Err., IQ offset, and Phase Err. .
Waveform Domain. Although features in modulation domain are
typically more robust [50], these metrics are calculated based on the
whole burst length and influenced negatively by the content fields
of GSM bursts. Thus fingerprinting FBS only with standard mod-
ulation error metrics is not enough. Alternatively, instantaneous
phases and frequencies of TSC depict the signal characteristics of
each FBS and contain rich phase and frequency information of
FBS within a short interval. Therefore, We conducted fast Fourier
transformation and discrete wavelet transform on each instanta-
neous trace and obtain their corresponding frequency domain and
wavelet domain traces. Thus we obtained 6 final traces in total and
a time-domain trace.

We extracted features from modulation errors, i.e., Frequency
Error, Phase Error, and IQ Offset of each burst and then extracted
waveform domain features from 6 traces of TSC in the same burst
including Mean, Standard Deviation, Skewness, Kurtosis, Median,

Maximum, Variance, Shannon Entropy (shown in Tab. 2). Therefore
a total of 51 features are available for constituting one fingerprint
of FBS.

5.6 Verification

Machine Learning Algorithm. Recall that FBSleuth matches
the fingerprints of the arrested FBS with the fingerprints of FBS

Table 2: Selected FBS features.

Feature Domain Feature Name

Modulation
Error Metrics

Freq Err. Frequency Error

Phase Err. Phase Error

IQ Offset IQ Offset

Instantaneous
Phase Metrics

Time. Mean, Standard Deviation,

Wavelet. Skewness, Kurtosis, Median,

FFT. Maximum, Variance, Shannon Entropy

Instantaneous
Frequency Metrics

Time. Mean, Standard Deviation,

Wavelet. Skewness, Kurtosis, Median,

FFT. Maximum, Variance, Shannon Entropy

collected in the wild. To achieve this, we utilized supervised learn-
ing to classify each fingerprint. We compared 11 representative
classifiers and chose Support Vector Machine ( SVM ) as the default
classification method. SVM separates the labeled set in two areas on
a multi-dimensional surface. It is of high efficiency, good accuracy,
and robustness against outliers and is less prone to overfitting than
other methods.

We utilized n bursts and their corresponding raw TSC traces
(each trace lasts 96 us) for one FBS to generate fingerprints and
train a binary classifier it. For k FBSes in our fingerprint database,
we have to train k binary classifiers with k × n traces.
Matching. FBSleuth collects raw traces from an FBS and extracts
their fingerprints. Then FBSleuth tries to match the extracted fin-
gerprint with the existing FBSes in the database. During the forensic
stage (i.e., collecting evidence), if a match is found in the database,
then newly recorded FBS messages, its time and location and in-
serted into the database. If none of the existing FBSes matches the
new fingerprint, it means the new fingerprint is from a new FBS.
Then, a new binary classifier should be trained and incorporated
into the system. To be specific, the original k binary-classifier sys-
tem should be extended to k + 1. To distinguish a new FBS from the
known FBSes, we apply a threshold for the probability score - if the
probability score is less than the threshold, the tested FBS should
be declared as a new FBS and vice versa. After an FBS is caught by
the police, the associated records in the evidence database can be
submitted to the court for further trial and sentencing.

6 FBSLEUTH EVALUATION

To evaluate FBSleuth, we conducted extensive experiments with 6
real FBSes provided by the law enforcement agencies of four cities.
Particularly, according to the law enforcement agencies, FBS1, FBS2,
and FBS3 were manufactured by the same vendor in Zhengzhou,
FBS4 was captured in Hangzhou, FBS5 was captured in Shanghai,
FBS6 was captured and manufactured in Guangzhou. The various
sources of FBSes indicate that they are likely manufactured by dif-
ferent vendors. The key questions we investigated are summarized
below:

• What’s the performance of FBSleuth in terms of precision,
stability, and consistency?

• What classification algorithm is suitable for FBSleuth and
how to set the parameters such as training sample size?

• How sensitive is FBSleuth against the supplied voltage of
FBS?
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• Can FBSleuth identify individual FBS across various work-
ing frequency points?

• What’s the minimum SNR level that FBSleuth can keep
working?

• Does FBSleuth depend on the receivers that record the raw
signal?

In summary, the performance of FBSleuth is:

• FBSleuth has over 99% precision, 96.5% recall, and 97.94%
F1 score both in the lab and wild environment.

• FBSleuth can maintain relatively good performance with
little influence of working frequency point, battery volume,
and SNR.

• The portable and low-cost signal acquisition device of FBSleuth
make it possible to be deployed in the real world.

6.1 Experiment Setup

FBS Setup. The maximum transmitting power of the 6 FBSes is
50 Watt. These FBSes can work in the whole GSM900 frequency
range (935MHz to 960MHz for downlink). The FBSes are connected
with a laptop for setting the working mode and parameters such as
working frequency configuration.
Collection Device Setup. We used USRP N210 equipped with an
RFX900 daughterboard as the collection device. In the wild envi-
ronments, the USRP N210 is equipped with a VERT900 antenna
for signal collection. The USRP is driven by compatible software
Gnuradio in Linux platform. We tuned the sample rate to be 25MHz
and the RX gain to be 15 in all the following experiments. Addi-
tionally, two other USRP N210 devices are tested for evaluating the
influence of different receivers.
Power Supply Setup. We supplied the FBS with a 12 V lithium
battery of 110 Ah volume and this kind of batteries are widely used
in the FBS crimes where criminals are moving around in a city.
Laptop Setup. We utilized two ThinkPad T440p model laptops,
with Intel i5 4200M CPU, 4G RAM, and Intel 7260 BGN wireless
network adapter in the experiments. One laptop is utilized for
connecting to FBS with Wi-Fi and controlling FBS through the user
interface. The other one is used for raw signal storage and signal
processing.

In the lab environment, the FBS was connected with the USRP
over the SMA cable. We added an attenuator between FBS and USRP
to adjust the gain of the signal. The signal gain of FBS is set to -10
dBm in the lab experiments. The USRP is connected to the laptop
via Ethernet. While in the wild environment, we utilized a USRP
N210 equipped with a VERT900 antenna as a receiver. FBSs are
powered with a battery carried on a trolley. We conducted extensive
experiments and evaluation on 6 real FBSes and the collected data
lasts for 5 months. For each experiment, we collected at least 20,000
traces for each FBS at each working frequency point (21 frequency
points from total 124 frequency points). To eliminate errors, we
randomly chose 1200 traces for each FBS at one working frequency
point and calculate the average result over three rounds of the test.

6.2 Metrics and Classifiers

Performance Metrics. Let n be the total number of FBSes and
therefore we have n classes. Given a new raw TSC trace from
an unknown FBS, FBSleuth identifies whether it is one of the
FBSes.We calculate the true positive (TPi ) for each classifier i , which
measures the cases that an FBS is classified correctly. Similarly, we

calculate the false positive (FPi ) and false negative (FNi ) as the rate
of wrongly accepted and wrongly rejected cases for each classifier
Ci (1 � i � n). We use standard classification metrics: precision,
recall, and F1 Score in our evaluation analysis [14]. The standard
classification metrics precision, recall, and F1 Score are defined as
follows.

Precisioni =
TPi

TPi + FPi

Recalli =
TPi

TPi + FNi

F1 Scorei =
2 × Precisioni × Recalli
Precisioni + Recalli

The average precision, recall, and F1 Score are defined as the
average over the n results.

To evaluate the performance of FBSleuth in the presence of new
FBS (not in the training set), we chose accuracy as the metric. Given
that the classifier trained by n classes and tested by n old classes
andm new FBS classes, the accuracy is defined as below.

Accuracy =

∑n
i=1TPi +

∑m
j=1TNj

n +m

WhereTPi is the true positive for class i andTNj is the true negative
for new FBS class j.

Influence of Classifier. To investigate the influence caused by
the classifier selection, we compared 11 most commonly used su-
pervised learning algorithms, including 1) Logistical Regression 2)
Support Vector Machine 3) Random Forest Classifier 4)Gradient Boost-
ing Classifier 5) Gaussian Naive Bayes 6) AdaBoosting Classifier 7)
Decision Tree Classifier 8) Extra Trees Classifier 9) Linear Discrimi-

nant Analysis 10) Quadratic Discriminant Analysis 11) KNeighbors
Classifier. We utilized the default threshold and employed 10-fold
cross validation to have a basic understanding which algorithm
behaves best.

For each classifier, we chose 1200 traces (1000 for training and
200 for testing each time) at 945MHz frequency for each FBS, that
is 7200 traces in total. We then fed them into the 11 aforementioned
classifiers separately. The results in Fig. 11(a) show that Gradient
Boosting Classifier, Extra Trees Classifier, and Support Vector Ma-
chine are the top 3 classifiers in term of precision, recall, and F1
score. Therefore, we chose them as our candidate classifiers.

Then we evaluated the accuracy of each classifier. Each time, we
chose 5 from 6 FBSes for training and all 6 FBSes for testing and
calculated the average accuracy in all 5 rounds for each classifier.
The maximum accuracy of Extra Trees Classifier was 0.852 with
0.900 as the threshold. The accuracy of Gradient Boosting Classifier
was 0.830 with a 0.994 threshold while it could achieve an accuracy
of 0.971 with a threshold of 0.84 for Support Vector Machine.

In conclusion, Support Vector Machine achieved good perfor-
mance in precision, recall, and accuracy as well as its reasonable
computation overhead. Therefore in the following experiments, we
accepted Support Vector Machine (SVM) with 0.84 threshold as our
classifier algorithm used in FBSleuth.

6.3 Overall Performance

ROC in different SNR. To evaluate the performance of the classi-
fier SVM, we calculated the receiver operating characteristics curve,
i.e. ROC curve. A ROC curve is a graphical plot that illustrates the
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Figure 11: (a) describes the precision and recall of 11 common supervised learning algorithms; (b) describes the ROC curve of
SVM classifier under different SNR conditions; (c) describes the confusion matrix of 6 FBSes.

diagnostic ability of a binary classifier system with the change of its
discrimination threshold. We calculated the true positive rate and
false positive rate of SVM with different thresholds and plotted the
ROC curve in different SNRs. We collected raw traces under 40dB
SNR at 945MHz frequency point and randomly selected 1200 traces
from each of FBS, 1000 for training and 200 for testing. Fig 11(b)
shows that the ROC curve goes towards the diagonal as the SNR
decreases. But even at 10 dB SNR, the classifier can still perform
with high precision.
Confusion Matrix. For each confusion matrix, each row of the
matrix represents the instances in a predicted class while each
column represents the instances in an actual class (or vice versa).We
collected raw trace under 40dB SNR at 945MHz frequency point and
randomly selected 1200 traces from each of FBS, 1000 for training
and 200 for testing. The resulting average classification score for
each FBS is shown in the confusion matrix in Fig. 11(c). All 6 FBSes
were almost always classified correctly. Even FBS1, FBS2, and FBS3,
which were manufactured by the same vendor, can be classified
without any misclassification between themselves. In sum, we can
conclude that an FBS can be identified with high precision and can
rarely be misclassified with each other.

6.4 Micro-benchmark Evaluation

(a) Working Frequency Points. In FBS crimes, the attacker can
change the frequency point frequently. For this reason, it is impor-
tant to identify the FBSes in different working frequency points. To
evaluate the effect of different working frequency points, we tested
5 different FBSes and set the FBSes to work at 935MHz, 941MHz,
947MHz, 953MHz, and 959MHz respectively which cover the high,
medium, and low frequency with the default settings. Fig. 12 shows
that FBSleuth can keep over 99% precision, recall, and F1 Score both
in the condition the training and testing samples from the same
working frequency point and from different working frequency
points. It indicates that even attackers change working frequency
frequently, FBSleuth can still identify them in different working
frequencies with high precision.
(b) Training Sample. To evaluate the influence of training sample
size, we analyzed 7200 traces from 6 FBSes (1200 traces from each)
at 947MHz working frequency point under 40dB SNR. We varied

the training sample size from 10 to 1000 (samples). Fig. 13(a) shows
that as the number of training sample increase, the precision keeps
over 99% and the average recall and F1 score all increase. We can
get over 99.7% precision as well as 98.6% recall when the trained
sample size is 800. This suggests that we can construct a good
fingerprinting classifier without requiring a large training sample
size.
(c) Ambient Noise. In practice, the SNR of FBS signals varies as
an attacker may tune the power amplifier or the distance between
the FBS and the receiver changes with time. So it is important that
the FBS fingerprint we extracted are stable against the changes
of SNR. In addition, the lowest SNR that our fingerprint method
can tolerate determine how far away can our method identify the
individual FBS.

To evaluate the effects of SNR, we manually added white Gauss-
ian noise on the collected signals. We tested the 6 FBSes under 6
SNR levels. At each SNR level, we collected 1200 traces at 936MHz,
945MHz, and 955MHz respectively and selected 1000 for training
and 200 for testing. Then we changed the SNR level and repeated
the test. The results are shown in Fig. 13(b). With the increase of
SNR, the average precision, recall, and F1 score improve. This is
because of the higher the SNR, the less influence from environmen-
tal noise on the FBS signals and thus we can obtain more clean
features. Fig. 13(b) also shows that the average precision and recall
remains over 90% even at 20dB SNR. In real cases, the signal power
of FBS can be over 100 Watt with large SNR, therefore we believe
that FBSleuth can perform well in practice.
(d) Battery Voltage. In real FBS crimes, the FBS is always supplied
by batteries for mobility. The remaining voltage of the battery may
have the influence upon the performance of FBSleuth. Given the
fact that FBS often works continuously for hours, meaning that
the remaining voltage will change with time. We collected 1000
traces under the standard 12 V as training set and collect 1000
traces from each voltage ranging from 13.30V (100% charged state)
to 10.21V (20% charged state) at 945MHz frequency point for each
FBS. Fig. 13(c) shows that variance of power has little effect on the
accuracy.
(e) Impact of Receiver. In practice, several receivers will be im-
plemented in the different areas to capture the signals from one

9

Session 7: Cellular, Phone, and Email ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

269



0.9925

0.9988

1.0000

0.9912

1.0000

0.9950

0.9950

0.9975

0.9975

0.9975

0.9988

1.0000

1.0000

1.0000

0.9950

0.9950

0.9975

1.0000

0.9962

0.9963

0.9962

0.9925

0.9950

0.9938

0.9900

93
5

94
1

94
7

95
3

95
9

Training Frequency (MHz)

959

953

947

941

935T
es

tin
g 

F
re

qu
en

cy
 (

M
H

z)

0.9927

0.9975

1.0000

0.9926

1.0000

0.9951

0.9951

0.9975

0.9975

0.9975

0.9975

1.0000

1.0000

1.0000

0.9926

0.9950

0.9975

1.0000

0.9975

0.9950

0.9975

0.9926

0.9950

0.9926

0.9904

93
5

94
1

94
7

95
3

95
9

Training Frequency (MHz)

959

953

947

941

935T
es

tin
g 

F
re

qu
en

cy
 (

M
H

z)

0.9925

1.0000

1.0000

0.9900

1.0000

0.9950

0.9950

0.9975

0.9975

0.9975

1.0000

1.0000

1.0000

1.0000

0.9975

0.9950

0.9975

1.0000

0.9950

0.9975

0.9950

0.9925

0.9950

0.9950

0.9900

93
5

94
1

94
7

95
3

95
9

Training Frequency (MHz)

959

953

947

941

935T
es

tin
g 

F
re

qu
en

cy
 (

M
H

z)

(a) F1 Score (b) Precision (c) Recall

Figure 12: Impact of varying frequency points on the performance of FBSleuth: (a) describes the influence on F1 score; (b)
describes the influence on precision; (c) describes the influence on recall.
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Figure 13: (a) describes the impact of varying number of training sample on the performance of FBSleuth; (b) describes the im-
pact of varying SNR on the performance of FBSleuth; (c) describes the impact of varying voltage of battery on the performance
of FBSleuth.

FBS in the different time. Therefore, it is crucial to evaluate the
portability of receivers. Three USRP N210 devices (U1, U2, U3) have
been used for evaluation in total. We collected signals from 6 FBSes
with three USRPs separately at 947MHz with 40dB SNR and used
signals received from one USRP for training and other USRPs for
testing in turns. Experiment results show that there’s no evident
difference in the performance of different receivers.

6.5 Wild Implementation and Evaluation

We implemented FBSleuth in the wild environment and evaluated
its performance. In Fig. 14, the star represents the initial location
of the FBS and the dot stands for the receiver, i.e. the USRP. During
the experiment, the USRP is fixed and the FBS can move anywhere
in the rectangle area. The distance between the USRP and the FBS
varies from 20 m to 210 m and the SNR varies from roughly 20dB
to 60dB. The transmitting power of the FBS can be tuned as well in
the experiment.

In this test, we set 5 different working frequency points for each
FBS. We randomly selected 1200 traces in 10 minutes’ record, 1000
traces for training and 200 traces for testing at each frequency
point for each FBS. Fig. 15 shows that FBSleuth identifies FBSes
with over 99% average precision, 96.4% average recall, and 97.94%

average F1 score in the wild environment among different working
frequency points. Although the F1 score performance drops a little
compared with the lab experiment, it still keeps high precision. This
indicates that FBSleuth can identify FBSes in the wild effectively.

7 RELATEDWORK

Wireless crime. The feasibility of wireless crimes with illegal
transceivers to impersonate legitimate radio frequency devices or
infrastructures has been studied by many researchers. Xenakis et
al. [12, 48, 49] analyzed the vulnerabilities in cellular networks and
discussed the feasibility of Man-in-the-middle attacks. Mjolsness
et al. [29] showed that even the state-of-art LTE (4G) networks
can suffer IMSI catcher attacks. Perez et al. [33] demonstrated that
an attacker with a budget of less than 10,000 $ can set up an FBS
to launch a practical attack to intercept 2G/3G mobile data. The
implementation of FBS attack has been further studied [40, 45] and
the attacks in real world have been reported inmany countries [1, 3–
5, 37].
Countermeasures. To fight against FBS crimes, detecting, and
tracking illegal transceivers have been widely studied [8–11, 27].
To protect cellular networks from illegal transceiver attacks, much
effort has been put on detecting and tracking the illegal transceivers.

10

Session 7: Cellular, Phone, and Email ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

270



1:2400 N

Mobile FBS

Fixed USRP

Figure 14: Wild Environment Experiment Setup.

Karsten et al. designed a smartphone application to detect IMSI
catchers [9]. Li et al. implemented an FBS detection system named
RBS-Radar, which can detect and locate the FBSes in the wild [27].
However, all the above work ignore the forensics for FBS crimes.
RF fingerprinting. The definition of RF fingerprinting was first
proposed by Hall et al. at 2003 [20]. They extracted fingerprints
from the Bluetooth signals and used it to identify the Bluetooth
devices. The key of RF fingerprinting is to extract the fingerprint
from wireless signals, and the extraction can be from both tran-
sient region and steady region. Transient is the part of the signal
that can be observed when the amplitude of the transmitter rises
from background noise to the level required for data communica-
tion [16, 21, 22, 35, 42–44]. However, due to the short duration, i.e.,
a few microseconds to tens of milliseconds of transient signals, the
extremely high sampling rate is required for acceptable identifi-
cation performance. On the contrary, Kennedy et al. proposed to
extract fingerprints from the steady-state period of signals [24].
Brik et al. developed a hardware fingerprinting approach called
PARADIS to extract device signature from modulation domain [17].
Their approach can be used to distinguish wireless cards from the
same vendor. Nguyen et al. [31] extended Brik’s work by employing
unsupervised learning techniques, which gets rid of the training
process.

Up to now, abundant RF fingerprinting work have been done
on various wireless devices, including Bluetooth devices [20], GSM
cell phones [36, 47], IEEE 802.16 (WiMAX) devices [46], UMTS
cell phones [38], LTE cell phones [13, 30], CRN devices [25], RFID
devices [41], IEEE 802.11 Wi-Fi devices [51], and IEEE 802.15.4
ZigBee devices [15, 32].

Motivated by the work above, FBSleuth extracted FBS finger-
print from the steady region of FBS signals. We extracted the fea-
tures from FBS signals and explained their meanings in nature.
What is more, we dealt with a case where FBSes can change their
transmitting power, frequency point, working mode and even the
FBSes themselves can be moved, all of which make the RF finger-
printing difficult. Moreover, previous works only focus on using RF
fingerprint to authenticate the subscriber in cellphone side which is
quite different from our research purpose, object, and methodology.
Besides modulation errors, we found the identifiable trace for FBS
and proposed a new method to extract the identifiable trace, specif-
ically, TSC in Normal Bursts from the raw RBS signals. We also
extracted and selected time domain, spectral domain and wavelet
domain features from the identifiable traces. Lastly, We employed

937 943 947 951 955
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1
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Precision
Recall

Figure 15: The overall performance of FBSleuth in different
working frequency points.

low-end devices, i.e., USRP to achieve higher accuracy compared
with the previous work [36] on GSM handsets with high-end equip-
ment.

8 LIMITATIONS AND DISCUSSION

(1) Hardware Modification. FBS attackers may attempt to escape
from our forensics scheme by modifying hardware. For instance,
attackers can modify components in the RF modules of an FBS or
just use a different FBS each crime. However, hardware modification
increases the cost and causes instability of FBSes.
(2) Signal-levelModification. FBS attackersmay attempt to change
the RF fingerprints at the signal level. For instance, attackers may
add noises before emitting the signal to obscure the RF finger-
prints. However, inserting noises will reduce the radius of FBS
attack ranges. However, such manipulation requires using arbitrary
waveform generators, which typically cost 70 times more than an
FBS and are cumbersome to carry around due to its power supply
requirement (plug with AC 220V in). In addition, attackers may
replay the FBS signals to interfere the forensics, but the timestamps
of SMSes can help the police reject the replayed signals.
(3) Scalability. Though Fig. 11 (c) illustrates that FBSleuth is able
to classify the 6 real FBSes with high accuracy, it is possible that a
larger FBS pool results in lower accuracy. However, there are few
chances that hundreds of FBSes existing within one area simultane-
ously in the real world. According to the Skyeye system of Qihoo
360 Technology Co. Ltd, typically no more than twenty FBSes exist
in one city in one month [34]. Moreover, to avoid misclassification,
we can combine time and location records of the received signals
and confirm the identity of an attacker’s vehicle from the images
of traffic cameras.

9 CONCLUSION

In this paper, we addressed the issue of forensics in combating the
serious FBS crimes in the real world. We designed, implemented,
and evaluated FBSleuth, a system that identifies FBS devices based
on the minor difference in the emitted signals caused by hardware
imperfection. To demonstrate the feasibility of FBS crime foren-
sics, we collected signal traces from 6 real FBSes during 5 months.
We conducted our experiments in both lab and wild environments
and evaluated FBSleuth under various settings. The results show
that FBSleuth can successfully identify the six FBSes with over
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99% precision and 96.4% recall under dynamic, low SNR wild envi-
ronments, limited training samples size across different frequency
points. FBSleuth can be promising for fighting against FBS crimes.
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